Spotting Code Mutation for Predictive Mutation Testing

Yifan Zhao Yizhou Chen Zeyu Sun
Key Lab of HCST (PKU), MOE; SCS Key Lab of HCST (PKU), MOE; SCS National Key Laboratory of Space
Peking University Peking University Integrated Information System,

Beijing, China
zhaoyifan@stu.pku.edu.cn

Beijing, China
yizhouchen@stu.pku.edu.cn

Institute of Software, Chinese
Academy of Sciences
Beijing, China
zeyu.zys@gmail.com

Qingyuan Liang Guogqing Wang Dan Hao"
Key Lab of HCST (PKU), MOE; SCS Key Lab of HCST (PKU), MOE; SCS Key Lab of HCST (PKU), MOE; SCS
Peking University Peking University Peking University
Beijing, China Beijing, China Beijing, China
liangqy@stu.pku.edu.cn guogingwang@stu.pku.edu.cn haodan@pku.edu.cn
ABSTRACT CCS CONCEPTS

Mutation testing is widely used to measure the test adequacy of a
project. Despite its popularity, mutation testing is time-consuming
and extremely expensive. To mitigate this problem, researchers pro-
pose Predictive Mutation Testing (PMT). Existing PMT approaches
build classification models based on statistical program features or
source code of programs to predict mutation testing results. Previ-
ous statistical feature-based PMT models need expensive overhead
to collect dynamic features and neglect the rich information inher-
ent in code text. Previous text-based PMT models extract essential
code elements as input and outperform the feature-based models.
However, they encode code text in a plain way. Therefore, they
cannot sensitively capture subtle differences in mutants and they
have difficulty in capturing the correlation between mutants and
tests. To address these challenges, we propose a new model, SODA.
SODA uses a new learning strategy, Mutational Semantic Learn-
ing, to make our model spot code mutation and its impact on test
behavior. In particular, we employ a new sampling strategy to rein-
force the corresponding relationship between mutants and tests by
sampling same-mutant contrastive groups. Then we employ con-
trastive learning to make our model capture subtle differences in
mutants. We conduct experiments to investigate the performance
of SODA. The results demonstrate that both in the cross-project
and cross-version scenarios, SODA achieves state-of-the-art classi-
fication performance (improves upon baselines by 5.32%-114.92%
in kill-F1 score, 0.04%-25.54% in survive-F1 score, 4.25%-60.43% in
accuracy) and has the lowest mutation score error.

“Dan Hao is the corresponding author. HCST is the abbreviation for “High Confidence
Software Technologies”. MOE is the abbreviation for “Ministry of Education”. SCS is
the abbreviation for “School of Computer Science”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695491

« Software and its engineering — Software maintenance tools.

KEYWORDS

contrastive learning, mutation testing

ACM Reference Format:

Yifan Zhao, Yizhou Chen, Zeyu Sun, Qingyuan Liang, Guoging Wang,
and Dan Hao. 2024. Spotting Code Mutation for Predictive Mutation Testing.
In 39th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE "24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3691620.3695491

1 INTRODUCTION

Mutation testing is widely used to measure the test adequacy of a
project, and mutation analysis is recognized as one of the strongest
test-adequacy criteria [2, 16, 39]. Mutation testing tools are uti-
lized to make small changes to source code, resulting in mutants
with seeded artificial faults that could mimic true faults [17, 24]. A
test suite is run against these mutants to assess test adequacy by
checking whether it can detect the seeded faults. If the test suite
identifies a mutant behaving differently from the original program,
the mutant is deemed “killed”; otherwise, it is deemed “survived”.
The “Mutation Score (MS)”, defined as the ratio of killed mutants,
serves as a measure of test adequacy. A test suite is considered
more reliable if it achieves a higher mutation score, indicating its
effectiveness in detecting a larger proportion of artificial faults.

Despite its popularity, mutation testing is time-consuming and
extremely expensive [13]. For example, Google [39] and Meta [3]
have adopted mutation testing to improve their test quality. How-
ever, in Google, the code base has approximately 2 billion lines of
code, with more than 150 million test executions per day [39]. Mu-
tating such a large complex software system and running all tests
against the generated tremendous number of mutants is impractical.
To mitigate this problem, researchers propose Predictive Mutation
Testing (PMT) [49] to facilitate scalable mutation testing. PMT aims
to predict the outcome of mutation testing without test execution.
Specifically, a PMT model directly predicts whether a test suite can
kill a given mutant, and then aggregates these predictions across
all mutants to calculate the predicted mutation score.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Mutated method

1 private static Object remove(final Object array, final int index) {
2 final int length = getlength(array);
if (index < @ || index >= length) {
if (index <= @ || index >= length) {
throw new IndexOut0fBoundsException("Index: " + index + ", Length: " + length);

}

final Object result = Array.newInstance(array.getClass().getComponentType(), length - 1);
System.arraycopy(array, @, result, @, index);

9 if (index < length - 1) {

10 System.arraycopy(array, index + 1, result, index, length - index - 1);

11 }

13 return result;

Test method-1
1 public void testRemoveAllNullObjectArray() {
ArrayUtils.remove((Object(]) null, 0);

Test method-2
1 public void testRemoveDoubleArray()
2 double[] array;
3 array = ArrayUtils.remove(new double[] {1}, 0);
4 assertTrue(Arrays.equals(ArrayUtils.EMPTY_DOUBLE_ARRAY, array))
5 e
6

}

Figure 1: Motivating example of two mutant-test pairs
formed by the same mutant with two tests from the commons-
lang project (commit d1a45e9). The mutated line is high-
lighted with color (i.e., the line is mutated from the red line
to the green line). Test method-2 kills the mutant (i.e., detects
the changed behavior) while Test method-1 does not.
Existing PMT approaches utilize machine learning algorithms
and train classification models based on statistical features or source
code of programs to predict mutation testing results. Previous statis-
tical feature-based PMT models [31, 49] need expensive overhead to
collect dynamic features without considering the rich information
contained in code text, and fall short of practical utility [1, 12]. To
address this issue, researchers have adopted more lightweight code
text as input. They extract informative elements such as key code
components (e.g., source method name) [20], contextual code in-
formation [12], and feed these elements into deep neural networks
to predict mutation testing results. These text-based PMT models
perform better than statistical feature-based PMT models [20].
However, these text-based PMT models face two challenges. First,
they cannot sensitively capture subtle differences in mutants.
A mutated method and its corresponding original method are often
similar at the textual level but greatly differ in terms of program
semantics. A mutation operator often makes small changes to the
source code, leaving most parts of the code unchanged. As the exam-
ple shown in Figure 1, the code is mutated by changing “<” to “<=".
Therefore, the code representation of the mutant and source code
will be very similar, making it hard for the model to learn the im-
pact of the mutation operator and discriminate between the mutant
and source code. Second, they have difficulty in capturing the
correlation between mutants and tests. Even identical mutants
may yield varying results for different test methods, because differ-
ent test methods may cover distinct parts and paths of a program,
leading to different program behavior. For example, in Figure 1, the
test method testRemoveAlINullObjectArray does not kill the mutant,
since the input array is null and its length is 0. Therefore, the In-
dexOutOfBoundsException is thrown regardless of the index value.
However, the test method testRemoveDoubleArray kills the mutant,
since the array length equals 1 and the IndexOutOfBoundsException
should not have been thrown, but is thrown due to the change of
the conditional statement. With the above challenges unaddressed,
existing PMT models achieve unsatisfactory performance.

Zhao et al.

In order to address the above challenges, we propose a new
model, SODA (SpOtting Code Mutation for PreDictive MutAtion
Testing). Different from previous PMT models, our model focuses
on the mutated parts of the code and their impact on test behav-
ior through contrasting killed and survived mutant-test pairs. In
particular, we propose a new learning strategy, i.e., Mutational
Semantic Learning, to make our model spot small code changes
(i.e., code mutation) and their corresponding impact on tests. Mu-
tational Semantic Learning comprises two steps, i.e., contrastive
group sampling and contrastive learning. We employ contrastive
group sampling to address the second challenge, i.e., we use the
proposed sampling strategy to reinforce the corresponding relation-
ship between mutants and tests. Each contrastive group consists
of two mutant-test pairs. We construct same-mutant contrastive
groups by sampling mutant-test pairs for the same mutant (e.g., the
two pairs in Figure 1). Therefore, the model concentrates on the
different part of the input (i.e., the test code) when comparing the
two pairs in each same-mutant contrastive group. Focusing on the
test code, the model learns to pay attention to the different test in-
puts and how the inputs trigger the altered program semantics, i.e.,
the impact of code mutation on the test results. To address the first
challenge, we employ contrastive learning [5, 11, 19]. Since tests are
written to verify the correctness of program semantics, survived
pairs indicate the corresponding tests detect the unchanged part of
the program semantics, while killed pairs indicate the correspond-
ing tests detect the changed part of it. Our model learns to spot
the changed program semantics by maximizing the representation
agreement among the mutant-test pairs within the same categories
(e.g., maximizing the representation similarity of killed mutant-test
pairs) while minimizing it otherwise (e.g., minimizing the repre-
sentation similarity between killed and survived mutant-test pairs).
Finally, we train the model on the PMT classification task, refining
the representation to better adapt our model to the PMT task.

We conduct experiments on Defects4] [16] to investigate the
performance of SODA, the results demonstrate that both in the
cross-project and cross-version scenarios, SODA achieves state-
of-the-art classification performance and has the lowest predicted
mutation score error. In particular, SODA outperforms the state-of-
the-art model MutationBERT by 11.09% in kill-F1 score!, 7.67% in
survive-F1 scorez, 9.63% in accuracy in the cross-version scenario,
and outperforms MutationBERT by 15.11% in kill-F1 score, 10.22%
in survive-F1 score, 12.55% in accuracy in the cross-project scenario.
In the cross-version scenario, SODA achieves the lowest mutation
score error, 0.0292, smaller than half of MutationBERT’s result. To
help understand our model, we further conduct an ablation study,
which substantiates the positive contribution of our contrastive
group sampling and contrastive learning strategies.

This paper makes the following contributions:

e We propose a new model SODA for PMT. We propose Mu-
tational Semantic Learning and the intuition behind it is to
learn the impact of small code changes through contrasting
same-mutant contrastive groups.

e We conduct a comprehensive experiment to verify the effec-
tiveness of the proposed approach. The results show that

IF1 score for predicting killed mutants
2F1 score for predicting survived mutants

Spotting Code Mutation for Predictive Mutation Testing

SODA significantly improves PMT effectiveness in both
cross-version and cross-project scenarios.

e We make our code and data publicly available at https://
github.com/yifan-CodeDir/SODA.

2 METHODOLOGY

Our approach aims to predict if a given test can kill a given mutant.
Different from previous PMT models, our model spots the mutated
parts of the code and their impact on test behavior via Mutational
Semantic Learning. Figure 2 shows the overview of our approach.
The workflow of our approach consists of three stages. In the first
stage (Data Collection & Preprocessing in Section 2.1), we collect
and preprocess the generated mutant data to construct text input
for each mutant-test pair. In the second stage (Mutational Semantic
Learning in Section 2.2), we train the representation layers of our
model. Specifically, first, we construct same-mutant contrastive
groups by sampling same-mutant positive (i.e., killed) mutant-test
pairs from the training dataset. Second, we train the model to learn
to represent mutant-test pairs by contrasting these groups. In the
third stage (PMT Learning & Prediction in Section 2.3), we train
the classification layer to classify the mutant-test pairs based on
the representation layers learned in the previous stage.

Note that PMT could be conducted on two levels: the mutant-
test suite level [1, 31, 49] and the mutant-test level [12, 20]. The
former focuses on predicting whether a mutant can be detected by
a whole test suite, while the latter focuses on predicting whether a
mutant can be detected by a single test (i.e., predicting the results
of mutant-test pairs). The latter produces more fine-grained results
and could indicate the former’s results: if at least one test is pre-
dicted to kill the mutant, the whole test suite is predicted to kill the
mutant. Therefore, in this paper, we focus on predicting the results
of mutant-test pairs and also present the results when aggregating
them to the mutant-test suite level.

2.1 Data collection & Preprocessing

Data collection. The input to our model consists of each mutant-
test pair, with the objective of accurately predicting the label of each
pair (i.e., 0 for survived and 1 for killed). To collect such data, we
start with a set of projects and their corresponding test suites. We
use mutation tools to generate a series of mutants and run the test
suites against them. The execution results of mutation testing are
recorded as ground truth. In order to facilitate test-level prediction,
we record fine-grained results, i.e. the results of running each test
against each mutant. Consequently, this process yields a dataset
comprising numerous mutant-test pairs, each annotated with its
respective label. We further perform data selection and only retain
the mutant-test pairs where the test covers the mutant. Because
tests that do not cover the mutant will certainly not kill the mutant,
and the prediction results may be overestimated if such tests are
not removed according to previous work [1]. Finally, we get a set
of mutant-test pairs for our model.

Preprocessing. To represent the code text of the mutant-test pairs,
we implement the following preprocessing steps as shown in the
example in Figure 3. First, we extract the source code of a mu-
tated method. Then we perform a token-level comparison between
the original and mutated methods. The differences are surrounded
with special tokens “<BEFORE>", “<AFTER>", and “<ENDDIFF>"

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

to denote the different tokens before and after mutation [12]. Sub-
sequently, the mutated method is concatenated with each test to
construct each mutant-test pair, where the mutated method and
the test are separated with a special token “<SEP>" to indicate their
different roles. Each mutant-test pair is labeled “killed” if the test
detects the abnormal behavior of the mutant and is labeled “sur-
vived” otherwise. Hence, at the end of this stage, we get a series of
processed mutant-test pairs along with their labels as our database.

2.2 Mutational Semantic Learning

In this stage, we aim to train the model to learn the changed pro-
gram semantics and its impact on tests. In particular, to reinforce the
relationship between mutants and tests and thus learn the impact of
changed program semantics on tests, we employ same-mutant con-
trastive group sampling. We sample contrastive groups as training
instances for contrastive learning. Each contrastive group consists
of two mutant-test pairs. This process allows the model to learn
from the nuanced differences between tests that interact with the
same mutant. We present the details in Section 2.2.1 Then, we
employ contrastive learning to analyze the differences between
killed and survived mutant-test pairs and thus learn the changed
program semantics. Specifically, we minimize the representation
distance if the two mutant-test pairs in a contrastive group belong
to the same category and maximize it otherwise, as described in
Section 2.2.2. This process helps the model learn to distinguish be-
tween the changed and unchanged semantics of mutants reflected
by killed and survived mutant-test pairs more effectively.

2.2.1 Contrastive Group Sampling. Contrastive group sampling
aims to sample contrastive groups to serve as training instances
for contrastive learning. Our objective is to construct informative
groups of mutant-test pairs from which the model can effectively
learn the changed semantics and its impact on tests.

The complete set of mutant-test pairs is composed of two types of
mutant-test pairs, i.e., “killed” and “survived” depending on whether
the test detects the changed program semantics. The two kinds of
pairs indicate different runtime situations and we aim to learn the
differences between them from the aspect of program semantics.
In the hyperspace of vectorized representation, our intuition is
to push away the vectorized representation of mutant-test pairs
from different categories and pull together those from the same
categories, so that when doing classification the different categories
of mutant-test pairs can be discriminated easily. Therefore, we
construct contrastive groups of mutant-test pairs to learn their
commonalities if they are in the same categories and differences
otherwise. Our representation training goal can be formally written
as follows:

R* = argmin G(R) (1)
N N
G(R) = Z 1i21y,=y, dis(R(mt;), R(mt;))
i=1 j=1

(2
1ixj1y,2y; dis(R(mt;), R(mt;))

1=
M=

J

Il
-
Il
—

where R represents the representation layers of the model, N is the
total number of mutant-test pairs, 1 refers to an indicator function
indicating whether a condition is satisfied, y; represents the label of

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Zhao et al.

Data C & Prepr M Learning PMT Learning & Prediction
C ive Learning
— — i B
= H Comparison Representation
L A — > BN Y Layer Layers
= | =
£ | = ~
fffffff 3 B2 |) g
2 g 8 g1 ® = §
Mutants
& CodeTs g @ — § *
b Encoder fin] m 3
\ - [o H =
W N~—— = >] 3 — 2
Test Code Mutanttest = N\ N———— < 270 g
i - < H © H
pairs & labels \ \5 8 L il Mutant-test [§}
; ~ Positive ~ | o pairs & labels
Sample for Mutant Feature
Contrasting ’ ‘ Encoding Vector N T /
Figure 2: Overview of SODA
Mutated method Input Representation
1 private static Object remove(final Object array, final int index) { 1 <ClLs>
2 final int length = getlLength(array); 2 private static Object remove(final Object array, final int index) {
if (index < @ || index >= length) { 3 final int length = getLength(array);
3 if (index <= 0 || index >= length) { 4 if (index <BEFORE>< <AFTER><=<ENDDIFF> 0 || index >= length) {
4 | throw new Index0Out0fBoundsException("Index: " + index + ", Length: " + length); 5 throw new IndexOutOfBoundsException("Index: " + index + ", Length: " + length);
5 ¥ 6 }
6 7
7 final Object result = Array.newInstance(array.getClass().getComponentType(), length - 1); 8 final Object result = Array.newInstance(array.getClass().getComponentType(), length - 1);
8 System.arraycopy(array, @, result, @, index); 9 System.arraycopy(array, 0, result, @, index);
9 if (index < length - 1) { 10 if (index < length - 1) {
10 System.arraycopy(array, index + 1, result, index, length - index - 1); 11 System.arraycopy(array, index + 1, result, index, length - index - 1);
1 } 12 }
12 13
13 return result; 14 return result;
14 } 15 b
16 <SEP>
Test method 17 public void testRemoveAllNullObjectArray() {
1 public void testRemoveAllNullObjectArray() { 18 ArrayUtils. remove((Object]) null, 8);
2 ArrayUtils.remove((Object[]) null, 0); 19 }
3 ¥

(a) An example of a mutant-test pair

(b) Input representation of the example

Figure 3: Data preprocess example

the mutant-test pair mt; (i.e., 0 for survived and 1 for killed), dis(-)
is a measurement calculating the distance between two vectors.

To achieve our goal, we first sample different kinds of contrastive
groups for mutant-test pairs to learn their commonalities and differ-
ences. Each contrastive group consists of two mutant-test pairs. In
particular, we consider two kinds of contrastive groups for mutant-
test pairs, i.e., “killed-killed” and “killed-survived” groups, and aim
to minimize the distance between the representation of the former
while maximizing the distance between the representation of the
latter. Note that we do not include “survived-survived” groups since
the killed mutant-test pairs need to satisfy more strict constraints
concerning execution, infection, propagation, and detection [45]
and therefore contain more semantic information and stronger
patterns, while the survived mutant-test pairs contain less seman-
tic information. Formally, the contrastive label for the contrastive
group (mt;, mt;) is as follows:

mti,mtj) = yl- _ y{ _
yi=yj=1

5 \
where y; and y; are labels (i.e., 0 for survived and 1 for killed) for
the mutant-test pair mt; and mt;, respectively.

To sample contrastive groups, we then employ a same-mutant
contrastive group sampling approach. We aim to learn the relation-
ship between mutants and tests by contrasting different categories
of mutant-test pairs for the same mutant, thereby highlighting the
significant role of tests.

As shown in Algorithm 1, for each mutant-test pair mt;, we aim
to find an appropriate mutant-test pair mt; to form a contrastive

L (3)

group (mt;, mt;j) (Line 3-21). With a certain probability «, we start
our search process (Line 4). Our search process begins by querying
the database for a killed mutant-test pair that includes the same
mutant as in mt; but is paired with a different test that can kill
the mutant (Line 5-8). If such a pair is found, it is selected as mt;
(Line 7). If no such pair exists, we then seek a killed mutant-test
pair mt; that shares the same mutated method as mt; (Line 9-12).
This includes pairs where the same mutation operator is applied
to the same method but at a different position, or where different
mutation operators are applied to the same method. With the same
mutated method, the two mutants in mt; and mt; indicate different
changed program semantics for the same method and thus help
the model better capture the impact of code mutation. If we are
still unable to find such a mutant-test pair, we resort to randomly
selecting a killed mutant-test pair from the project (Line 13-15). In
addition to the outlined search process, we occasionally select a
killed mutant-test pair at random with a specific probability to aid
the model in escaping local optima (Line 17-19). This strategy is
grounded in two main reasons. First, we assume that mutant-test
pairs with higher textual similarity (i.e., identical mutated method)
pose greater challenges in discrimination. Conversely, a randomly
selected mutant-test pair will typically exhibit lower textual similar-
ity, making it easier to discriminate. This approach allows the model
to initially “warm up” with simpler contrastive groups and then
tackle more complex ones. Second, incorporating randomly selected
mutant-test pairs enables the model to compare different mutated
methods, thereby discovering the commonalities and differences

Spotting Code Mutation for Predictive Mutation Testing

between different methods and their inputs, which enhances the
model’s generalizability. With the preceding process, the found mt;
is grouped with mt; and added to batch¢y (Line 20). The algorithm
returns batchc, for further representation learning (Line 22).

Algorithm 1: Algorithm for Contrastive Group Sampling

Input: A batch of mutant-test pairs batchy,;, random
probability a, set of all killed mutant-test pairs MTj

Output: A batch of contrastive groups batcheg

Function Sample_Contrastive_Group(batchm;, a, MT;.):

[

2 batcheg =[]

3 for each mutant-test pair mt; in batchp,; do

4 if rand(0,1) < a then

5 m = get_mutant(mt;)

6 if has_kill_mutant_test_pair(m, MT}.) then

7 ‘ mtj = get_kill_mutant_test_pair(m, MTj)
8 end

9 else if has_other_mutant_for_same_method(m,

MT;.) then

10 m’ = get_mutant_for_same_method(m, MT})
1 mtj = get_kill_mutant_test_pair(m’, MTy)
12 end

13 else

14 ‘ mt; = random_sample(MTj.)

15 end

16 end

17 else

18 ‘ mtj = random_sample(MTj)

19 end

20 Append (mt;, mt;) to batchey
21 end
22 return batcheg

2.2.2 Mutant Representation Learning through Contrastive Learning.
After constructing the contrastive groups, the next step is to use
these groups to train a model to distinguish between different cate-
gories of mutant-test pairs. We begin by employing the widely used
pre-trained language model, CodeT5 [46], to encode the code text.
We select CodeTS5 for its outstanding performance on code-related
tasks [4, 9, 23, 28, 48]. Since our task focuses on understanding code
semantics and is a classification task rather than a generation task,
we use the encoder part of CodeT5 to encode the mutant-test pairs.

For each contrastive group constructed from the preceding pro-
cess, each mutant-test pair in the contrastive group is first tokenized
and embedded to produce an initial representation of code. Then
the initial representation is fed into the CodeT5 encoder to get an
encoding of the mutant-test pair, denoted as e. The feature embed-
ding layer is then applied, aiming to further project the encoded
representation to a low-dimensional hyperspace for distance cal-
culation. Therefore, we use a multi-layer perceptron to produce a
feature vector f.

f=0(Ws xa(W; +e+by) +by) 4

where o is the ReLU activation function, Wy, W, are the trainable
weight matrices and b1, by are the bias vectors.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

In the comparison layer, the feature vector is linearly projected

to a 2-dimensional contrastive representation vector.
U= W3 * f + b3 (5)

where W5 is the trainable weight matrix and bs is the bias vector.

The representation of different mutant-test pairs in different
categories is compared in the comparison layer. In particular, the
contrastive loss is calculated based on vector v, which is then used
to update the encoding and feature embedding layers based on
backpropagation to discriminate the mutant-test pairs. Formally,
the contrastive loss Losscy, for the contrastive group (mt;, mt;) is
calculated as follows:

Losscp, (z)i, vj,LgL) = LgL - sim (Ui,vj)Z ()
6

+ (1 - LICJL) - max (O,M — sim (vi,vj))z

where v; and vj are the two contrastive representation vectors

for mt; and mtj, respectively, Llc{L is the contrastive label shown
in equation (3) indicating whether mt; and mt; are in the same
category, sim(-) is the euclidean distance between the two vectors,
M is the maximum margin indicating the threshold for dissimilarity.

2.3 PMT Learning & Prediction

In this stage, we aim to tune the model to adapt it to the PMT task.
Besides leveraging the representation layers trained in the previous
stage to provide informative input for the classification task, we
also aim to incorporate the original information from the plain text.
Therefore, we employ an additional embedding layer to embed the
encoded text e and produce a classification vector c. The feature
vector f and the classification vector ¢ are concatenated, and fed
as input to a multi-layer perceptron to produce the final prediction
result. Specifically, we use the following formula to calculate the
prediction result.

¢ = 01(Ws * 01(Wy = (e) + bg) + bs) ()

§=02(We = ([f@c])+bs) ®)
where o1 and oy are the ReLU and sigmoid activation functions,
respectively, Wy, W5, Wi are the trainable weight matrices and by,
bs, bg are the bias vectors, [a @ b] means concatenating vector a
with b.

We use the cross-entropy loss to train the model to predict muta-
tion testing results. Cross-entropy loss is widely used in classifica-
tion tasks [30], and we perform weighted cross-entropy loss [12] to
better handle the well-known imbalanced data problem in PMT [49].
The formula for calculating cross-entropy loss is as follows:

Lossce(y,9) = —(wiylog(d) + wz2(1-y)log(1-9)) (%)
where 7 is the predicted killing probability of the mutant-test pair,
y is the true label of the mutant-test pair (0 for survived and 1
for killed), w; and wy are the weights for the positive samples
(i.e., killed mutant-test pairs) and negative samples (i.e., survived
mutant-test pairs), respectively, depending on the proportion of
each class in the training set.

After the training phase, the predicted probability can be used to
predict mutation testing results. Specifically, the model can predict
the probability of a test killing a mutant, i.e., mutant-test level PMT.
The model can also be applied to mutant-test suite level PMT by

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

aggregating all predicted test results for a given mutant. We use the
threshold aggregation strategy since previous work [12] has shown
its effectiveness. Formally, we use the following formula to predict
the mutation testing result of a test suite T for a given mutant m:

0 VteTs.t.g(mt)<0.1

it (10)
1 FteTs.t.j(mt) >0.1

MmD={

where §(m, t) denotes the predicted killing probability of the mutant-
test pair (m, t), p(m,T) = 0 denotes the mutant m is predicted to
be “survived” under test suite T and “killed” otherwise. We choose
0.1 as the threshold because with 0.1 our model achieves the best
performance on the validation dataset as shown in Section 4.5.

3 EXPERIMENT SETUP

In this section, we present the setup of the experiment, which aims
to investigate the performance of our approach by comparing it
against the state-of-the-art PMT approaches. In particular, as our
approach and the state-of-the-art PMT approaches are all learning-
based techniques, the evaluation is conducted in two scenarios,
i.e., the cross-version and cross-project scenarios. Besides, we also
conduct an ablation study and a parameter-tuning experiment to
help better understand our approach. To sum up, we aim to answer
the following five research questions.

RQ1. How does our approach perform in a cross-version
scenario? In this RQ, we aim to investigate the effectiveness of
SODA when trained with within-project data. For each project, we
use mutant testing results on older versions to train a model and
mutation testing results on the latest version to test the model °.

RQ2. How does our approach perform in a cross-project
scenario? In this RQ, we aim to investigate the effectiveness of
SODA when trained with cross-project data. For each project, we
use mutation testing results on other projects to train the model.

RQ3. How do different processes contribute to the effec-
tiveness of our approach? In this RQ, we aim to investigate how
the two key processes, i.e., contrastive group sampling and con-
trastive learning, contribute to the overall effectiveness of SODA.
That is, we remove one of the processes each time and observe the
effectiveness change of the modified SODA.

RQ4. How can our approach help reduce the time cost for
mutation testing? Since PMT aims to reduce the time for mutation
testing, in this RQ, we aim to investigate to what extent can we save
time if applying PMT models to mutation testing. We compare the
time costs to run the mutation tool and PMT models and present
the predicted mutation score error of the PMT models.

RQ5. How do the parameters influence the effectiveness
of our approach? In this RQ, we aim to investigate the impact
of setting different thresholds for aggregation in test suite level
PMT. Therefore, we tune the threshold from a discrete set on the
validation dataset and observe the effectiveness change of the PMT
models to select the best threshold for aggregation.

3.1 Baselines

We include the state-of-the-art PMT models Seshat [20] and Mu-
tationBERT [12] as our baselines. We do not include statistical
feature-based PMT approaches [31, 49] since they are less effective

3We use “the latest version” to refer to the most recent version of a project in Defects4],
and use “older versions” to refer to the other versions of a project in Defects4]

Zhao et al.
Table 1: Subject programs
Project ‘ Version ‘ LoC # Tests Date # Mut. Gen
1 21,788 2,291 2013-07-26 22.793
10 20,433 2,198 2012-09-27 19,767
20 18,967 1,876 2011-07-03 19,073
commons-lang 30 17,660 1,733 2010-03-16 18,144
40 17,435 1,643 2009-10-22 17,972
50 17,760 1,720 2007-10-31 18,151
60 16,920 1,590 2006-10-31 17,819
1 96,382 2,193 2010-02-09 81,006
5 89,347 2,033 2008-11-24 75,024
ifreechart 10 84,482 1,805 2008-06-10 71,052
15 84,134 1,782 2008-03-19 70,647
20 80,508 1,651 2007-10-08 67,479
25 79,823 1,617 2007-08-28 66,766
7,826 1,029 2017-05-31 5,044
10 7,693 996 2016-05-17 4,775
gson 5 7,630 984 2016-02-02 4,722
1 5,418 720 2010-11-02 2,295
30 2,497 354 2010-06-17 1,592
commons-cli 20 1,989 148 2008-07-28 1,118
10 2,002 112 2008-05-29 1,151
1 1,937 94 2007-05-15 1,118
25 25,218 573 2019-01-16 30,010
20 21,480 384 2016-09-01 25,257
jackson-core 15 18,652 346 2016-03-21 21,599
10 18,930 330 2015-07-31 22,089
5 15,687 240 2014-12-07 18,610
1 15,882 206 2013-08-28 16,982
1,619 290 2017-12-11 1,173
COMMONS-csv 1,276 200 2014-06-09 1,043
5 1,236 189 2014-03-13 996
1 806 54 2012-03-27 695

than Seshat as shown in previous work [20]. However, to make a
more comprehensive comparison available, we provide the results
of a statistical feature-based baseline EPMT [1] on our website [42].
We here briefly introduce the included baselines.

Seshat is a deep-learning model utilizing Bi-directional GRU to
process text and perform encoding. The model input is extracted
from the code, considering essential textual inputs, i.e., test and
source method names, code tokens of mutated statements, and
mutation operators. Seshat is the first PMT model proposed to use
textual input rather than statistical features. It shows promising
results and outperforms feature-based PMT.

MutationBERT is proposed based on the pre-trained model Code-
BERT [8]. It aims to include more code context to enhance the
accuracy of PMT since the code beyond simply mutated lines and
method names also contains useful information. Therefore, they
construct text input by including the code surrounding a mutated
line and the body of the test method, and then use the textual input
and labels to fine-tune CodeBERT. MutationBERT is the state-of-
the-art PMT model, showing better PMT results than Seshat [12].

3.2 Subjects

We use six projects from Defects4] v2.0.0 [16] as our experimental
subjects following previous work [20]. Defects4] is a widely-used
dataset for many software testing tasks, such as mutation test-
ing [12, 20], fault localization [21, 22, 26], program repair [6, 14, 27],
etc. Each project has evolved over time, resulting in multiple ver-
sions. We select program versions that are multiples of 5 or 10 fol-
lowing previous work [20] to facilitate the cross-version scenario
evaluation, and list them following time order. Note that a smaller
version number does not always indicate an older version, e.g.,
in commons-lang and jfreechart smaller version numbers indicate

Spotting Code Mutation for Predictive Mutation Testing

more recent versions. Major is used as the Java mutation tool [15]. It
consists of two main components, i.e., a compiler-integrated muta-
tor and a mutation analyzer, to generate mutants and is widely used
in mutation testing [20, 31, 43, 49]. Table 1 shows the information
about our subject programs, including project name, version, LoC,
number of tests, release date, and number of generated mutants.
To conduct evaluation in the cross-version scenario, for each
project, we use the data from its latest version as testing data, data
from its second latest version as validation data, and data from the
other older versions as training data. To conduct evaluation in the
cross-project scenario, we only consider the data from the latest
version for each project. In particular, we use the five projects with
the largest number of samples (i.e., commons-lang, jfreechart, gson,
Jjackson-core, commons-csv) to conduct five-fold validation. Each
time we use one of the projects as testing data, another project as
validation data, and the rest three projects as training data.

3.3 Evaluation Metrics

We employ the widely used metrics for binary classification tasks,
i.e., precision, recall, F1 score, and accuracy, as our evaluation met-
rics. Moreover, since survived and killed mutants are both important
in PMT, we report kill precision, kill recall, kill-F1 score, survive
precision, survive recall, and survive-F1 score to comprehensively
understand the performance of our method. Besides, we include
mutation score error as another metric [20, 49]. Mutation score
is used to estimate the test adequacy of a program, which can be
calculated by MS = % where |K| and |S| are the number of
killed mutants and survived mutants, respectively. The calculation
formula of mutation score error is Eys = |MSp — MS|, where Eps
is the mutation score error, MSp is the predicted mutation score,
and MS is the ground truth of mutation score.

3.4 Implementation

We implement Seshat and MutationBERT utilizing their published
replication packages. The parameters are set following their work [12,
20]. For SODA, in the Mutational Semantic Learning stage, we set
the maximum number of training epochs to 50 and use the AdamW
optimizer [25] with a batch size of 64. The learning rate is initial-
ized to 5 X 107>, In the PMT Learning stage, we set the maximum
number of training epochs to 30 and use the AdamW optimizer
with a batch size of 128 and a learning rate of 1 x 107>, All three
models’ loss functions converge using these settings.

The CodeBERT and CodeT5 both have a maximum input token
length limit of 512. Therefore, for CodeBERT, we truncate the token
sequence of the mutant-test pair if its length exceeds 512 tokens
following previous work [12]. For our method utilizing CodeT5,
we use a context window surrounding the mutated line of code
to handle this situation. Specifically, we use a 256 token-length
context window where the mutated line lies in the central location
to represent the mutant if its length exceeds 256 tokens. We truncate
the token sequence of the test if its length exceeds 256 tokens. Then
we combine the code and test to form the final input.

All the experiments are conducted on a workstation with 2 In-
tel Xeon Gold 5218R CPUs, 256GB RAM, and four 24G GPUs of
GeForce RTX 3090, running Ubuntu 18.04 x64 OS. We implement
our approach based on PyTorch V1.11.1 [37].

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

4 RESULTS AND ANALYSIS

4.1 RQ1. Cross-version scenario

We compare the performance of Seshat, MutationBERT, and SODA
in the cross-version scenario, where data generated from the older
versions are used to train and the data generated from the latest ver-
sions are used to test. Besides, we present prediction performance
from two granularities, i.e., test matrix (i.e., mutant-test level predic-
tion) and test suite (i.e., mutant-test suite level prediction), where
the former provides fine-grained results, and the latter provides
results aggregated based on the former. Table 2 presents the evalu-
ation results with precision, recall, F1 score, and accuracy metrics.
From the table, SODA performs the best both in terms of predicting
test matrix and test suite results among the three models.

In particular, for predicting test matrix, SODA outperforms Se-
shat and MutationBERT. SODA improves upon Seshat by 7.09%
in kill precision, 5.76% in kill recall, and 7.34% in kill-F1 score, re-
spectively. In terms of predicting survived mutant-test pairs, SODA
improves upon Seshat by 2.37% in survive precision, 3.03% in sur-
vive recall, and 2.94% in survive-F1 score, respectively. Besides,
SODA achieves 4.25% higher accuracy than Seshat. SODA outper-
forms MutationBERT in terms of all metrics except kill recall. In
particular, SODA improves upon MutationBERT by 20.02% in kill
precision, and 11.09% in kill-F1 score, but performs 2.65% worse
than MutationBERT in kill recall. This indicates that SODA works
more conservatively, i.e., it tends to guarantee the predicted killed
mutants are true positives while may produce more false negatives
(i.e., some killed mutants are falsely predicted to survive). The effect
can be eliminated by further running a confirmation check before
presenting predicted-survived mutants to the user [12]. A confir-
mation check by running each predicted-survived mutant could
be a practical application for PMT, ensuring the list presented to
the developer is free of incorrect predictions [12]. This approach
guarantees that the information provided is actionable and saves
developers time in verifying the tool’s results. Due to space limita-
tions, we provide the results on our website [42]. Besides, SODA
improves upon MutationBERT by 0.17% in survive precision, 13.13%
in survive recall, 7.67% in survive-F1 score, and 9.63% in accuracy.

When it comes to predicting test suite level results, SODA con-
sistently outperforms Seshat and MutationBERT. Thanks to its
better performance at a finer granularity (test matrix granularity),
it achieves the best predictive performance when the results are ag-
gregated at the test suite level. In particular, SODA improves upon
Seshat by 17.99% in kill-F1 score, 25.54% in survive-F1 score, and
20.57% in accuracy. Besides, SODA improves upon MutationBERT
by 6.70% in kill-F1 score, 14.55% in survive-F1 score, and 8.23% in
accuracy. For kill precision, kill recall, survive precision, and sur-
vive recall, SODA all outperforms Seshat and MutationBERT by a
large margin. Note that different from the test matrix level, SODA
performs better than MutationBERT in terms of kill recall at the
test suite level, probably due to the following compounding effect.
Although SODA may falsely predict some killed mutant-test pairs
to survive, it accurately predicts at least one killed mutant-test pair
within the same test suite. Consequently, the entire test suite is still
correctly predicted to kill the mutant, contributing to high kill recall.
In summary, SODA performs the best in the cross-version scenario
no matter for the test matrix granularity or test suite granularity.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Table 2: Performance comparison in the cross-version scenario

Granularit Model Kill Kill Kill Survive Survive Survive Accurac
v Y Precision Recall F1Score Precision Recall F1 Score uracy
Seshat 0.7125 0.7918 0.7322 0.9128 0.8716 0.8880 0.8461
Test Matrix | MutationBERT 0.6357 0.8603 0.7075 0.9328 0.7938 0.8490 0.8046
SODA 0.7630 0.8374 0.7860 0.9344 0.8980 0.9141 0.8821
Seshat 0.8518 0.6954 0.7636 0.5371 0.7393 0.6144 0.7219
Test Suite MutationBERT 0.8724 0.8233 0.8444 0.6574 0.7136 0.6734 0.8042
SODA 0.9230 0.8801 0.9010 0.7390 0.8072 0.7714 0.8704

Zhao et al.

To better understand the process of Contrastive Learning (CL),
we plot the 2-dimensional representation vector » on a surface and
form a scatter plot in Figure 4. In the figure, we plot the change of
the vector v in the CL process for project commons-cli, commons-csv,
and gson, as shown in the first, second, and third rows, respectively.
For each project, we plot the v when training is completed in epoch
1, epoch 10, and epoch 20, as shown in the first, second, and third
columns, respectively. The killed mutant-test pairs are represented
by the red points while the survived mutant-test pairs are repre-
sented by the blue points. From the figure, initially, the model has
not yet learned how to discriminate between different categories of
samples. Thus, the points are scattered chaotically, making it hard
to classify them into their correct categories. However, as the train-
ing process progresses, the model begins to discern the differences
between various categories of samples, leading to the increasing
separation of the blue and red points. Specifically, the red points
begin to cluster together while the blue points are increasingly
pushed away from them. After 20 epochs, it becomes easy to sepa-
rate most of the killed and survived mutant-test pairs since their
representation is distributed differently. Therefore, SODA demon-
strates enhanced proficiency in accurately classifying mutant-test
pairs as killed within a certain scope in the hyperspace.

Figure 4: The distribution of representation vector at differ-
ent epochs in the CL process. The first, second, and third
rows for commons-cli, commons-csv, and gson, respectively.

Epoch 1 Epoch 10 Epoch 20

@ Killed (O Survived
4.2 RQ2. Cross-project scenario

Table 3 shows the performance comparison of the three models in
the cross-project scenario. In this scenario, data generated from

other subjects are used to train the model. From the table, SODA
still achieves the best overall predictive performance. In particular,
when predicting the test matrix level results, SODA outperforms
Seshat by 70.46% in kill-F1 score, 0.04% in survive-F1 score, and
8.84% in accuracy. Besides, SODA outperforms MutationBERT by
15.11% in kill-F1 score, 10.22% in survive-F1 score, and 12.55% in
accuracy. Compared to the performance in the cross-version sce-
nario shown in Table 2, the predictive performance of the three
models all drops from over 80% accuracy to less than 70% accuracy.
This is consistent with results from previous work [12], because in
the cross-version scenario, different versions of the same project
have similar code base and tests, therefore the training data and
testing data have similar data distribution but in the cross-project
scenario they do not. When the results are aggregated to the test
suite level, SODA outperforms Seshat by 114.92% in kill-F1 score,
5.41% in survive-F1 score, and 60.43% in accuracy. SODA outper-
forms MutationBERT by 5.32% in kill-F1 score, 9.72% in survive-F1
score, and 4.51% in accuracy. However, SODA performs worse than
Seshat in terms of survive recall at both the test matrix and test
suite levels, indicating that SODA produces more false positives.
Here we observe a tendency of predicting mutants to survive for
Seshat caused by data imbalance. At the test matrix level, 24% of
mutant-test pairs are killed, while at the test suite level, 56% of
mutants are killed. Therefore, it is an imbalanced dataset with dif-
ferent majority classes at different prediction levels. Since at the
test matrix level survived mutant-test pairs constitute the majority
class, Seshat tends to falsely predict mutants to be survived (more
false negatives). Therefore Seshat has a high survive recall but low
kill recall. At the test suite level, where the survived mutants con-
stitute the minority class, Seshat maintains a high survive recall
but exhibits a low kill recall and accuracy, which falls below 50%.
However, SODA is more robust to the imbalanced data due to the
weighted loss strategy, with a nearly 70% accuracy at the test suite
level.

4.3 RQ3. Ablation Study

To investigate the effectiveness of our Contrastive Group Sampling
(CGS) process and Contrastive Learning (CL) process, we further
conduct an ablation study in the cross-project scenario. The results
are shown in Table 4. Specifically, to investigate the contribution
of CGS, we remove it and sample the contrastive groups by ran-
dom sampling, denoted as SODA-w/o CGS in the table (i.e., the
second row). To investigate the contribution of CL, we remove the
CL process, meaning that we do not use contrastive learning and
directly fine-tune CodeT5 with the collected PMT data. The variant
is denoted as SODA-w/o CL in the table (i.e., the third row).

Spotting Code Mutation for Predictive Mutation Testing

Table 3: Performance comparison in cross-project scenario

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Granularit Model Kill Kill Kill Survive Survive Survive Accurac
v Y Precision Recall F1Score Precision Recall F1 Score uracy
Seshat 0.3598 0.3227 0.3128 0.7113 0.7522 0.7213 0.6068
Test Matrix | MutationBERT 0.4030 0.6019 0.4632 0.7706 0.5924 0.6546 0.5868
SODA 0.4620 0.6577 0.5332 0.8101 0.6584 0.7216 0.6604
Seshat 0.7131 0.2681 0.3553 0.3775 0.7908 0.4855 0.4309
Test Suite MutationBERT 0.7332 0.7398 0.7251 0.4838 0.4972 0.4664 0.6615
SODA 0.7378 0.8169 0.7636 0.5889 0.4865 0.5117 0.6913

From the table, both of the two processes positively contribute
to the effectiveness of SODA. Without CGS, the performance of
SODA decreases by 5.53% in kill-F1 score, 0.47% in survive-F1 score,
and 2.62% in accuracy. This indicates that the sampling strategy for
the contrastive group is important. By sampling same-mutant con-
trastive groups as training instances, the model can more effectively
learn to discriminate between different categories of mutant-test
pairs. It achieves this by determining whether tests trigger the
altered program semantics, thereby enhancing its ability to clas-
sify with greater accuracy. Without CL, the performance of SODA
decreases by 11.27% in kill-F1 score, 11.65% in survive-F1 score,
and 13.11% in accuracy. This indicates that contrastive learning
helps SODA learn a better representation of mutant-test pairs by
pushing the representation of different categories of samples away
and pulling together those of the same categories. With contrastive
learning, the model significantly outperforms mere fine-tuning
on downstream data, achieving substantial performance improve-
ments. CL helps CodeT5 to better capture the fine-grained code
edit operations and better understand the impact of the mutant op-
erators on the corresponding methods and tests. In summary, both
of the two processes positively contribute to the effectiveness of
SODA and play important roles in improving SODA’s performance.

4.4 ROQ4. Efficiency

To investigate the efficiency of PMT models, we compare their infer-
ence time. To compare the time cost of predictive mutation testing
with traditional mutation testing, we also report the execution time
of Major to compute the full test matrix. The time costs for each
tool to run are listed in Table 5, where the second column lists the
execution time of Major, the third to fifth columns list the infer-
ence time of Seshat, MutationBERT, and SODA, respectively. Due
to space limitations, we only list the inference time and leave the
training time on our website [42]. Inference time is more important
since the training process can be conducted offline.

From the table, Seshat is the most efficient model, costing less
than 4 minutes to perform inference, while SODA costs less than 45
minutes to complete prediction. However, Major costs at most 1889
minutes to compute the full test matrix. MutationBERT and SODA
take more time to predict mutation testing results, because they
are built on larger pre-trained code models, and they have much
longer input to process than Seshat (i.e., more contextual informa-
tion). However, despite SODA being the least efficient model, it still
achieves 30.06%, 24.38%, 21.71X, 20.16X, 124.96X, 41.00x speed up
compared to Major on the six projects respectively.

Despite its high efficiency, how do the PMT models actually
perform in predicting the mutation score? We use another metric,

mutation score error, to measure their accuracy in predicting the
mutation score. The averaged prediction results in the cross-version
and cross-project scenarios are shown in Table 6. From the table,
SODA predicts mutation score with the highest accuracy, with
a mutation score error of 0.0292 and 0.1242 in the cross-version
and cross-project scenarios, respectively. However, Seshat predicts
mutation score with the worst accuracy, its mutation score error
is 3.22 times and 2.40 times larger than SODA’s in cross-version
and cross-project scenarios, respectively. Therefore, while Seshat
demonstrates notable efficiency and reduced overhead as a PMT
model, SODA remains an attractive option, offering a balanced com-
promise between overhead and accuracy in predicting mutation
scores, which can be proved by the confirmation check results [42].
With confirmation check, Seshat and SODA have comparable over-
heads, while SODA still achieves higher accuracy than Seshat.

4.5 RQ5. Parameter Tuning

To better understand the impact of threshold setting on the effec-
tiveness of our model, we perform a parameter-tuning study by
tuning the threshold and investigate the change in SODA’s effec-
tiveness. We tune the parameter on the validation set and use the
best parameter setting in the aggregation strategy for RQ1 and RQ2.

Table 7 presents the performance of choosing different thresholds
for aggregating results at the test suite level on the validation set.
We tune the threshold from the set {0.10, 0.25,0.50,0.75,0.90}. We
only report kill-F1 score, survive-F1 score, and accuracy due to space
limitations. From the table, we observe that all of the three models
perform the best when the threshold is 0.10. Specifically, Seshat
achieves the best kill-F1 score and accuracy at 0.10, while achieving
the best survive-F1 score at 0.25. Since the kill-F1 score significantly
decreases at 0.25 while the survive-F1 score remains stable at 0.10
and 0.25, we choose 0.10 as the threshold for Seshat. MutationBERT
and SODA all achieve the highest kill-F1 score, survive-F1 score,
and accuracy when the threshold is 0.10. On the validation set,
SODA consistently outperforms Seshat and MutationBERT with
different choices of threshold.

5 DISCUSSION

In this section, we explore the impact of false negatives and false
positives, analyze evaluation results on more recent code bases, and
examine the causes of incorrect predictions.

Table 8 shows the F s score in the cross-version scenario (cross-
project results are presented on the website [42] due to space limi-
tations). Since Fg score assigns different weights to precision and
recall, we present the results to further discuss the trade-offs be-
tween false negatives and false positives. We not only select the

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Zhao et al.

Table 4: Ablation study results

Kill Kill Kill Survive Survive Survive Accur
Precision Recall F1Score Precision Recall F1 Score ceuracy
SODA 0.4620 0.6577 0.5332 0.8101 0.6584 0.7216 0.6604

SODA-w/o CGS 0.4566 0.6221 0.5037
SODA-w/o CL 0.4095 0.6428 0.4731

0.7979 0.6685 0.7182 0.6431
0.7754 0.5663 0.6375 0.5738

Table 5: Efficiency comparison

‘ Time to Run

Project
‘ Major (s) ‘ Seshat (s) MutationBERT (s) SODA (s)
commons-lang 12,924 33 410 430
jfreechart 64,719 203 2,491 2,655

gson 16,738 69 723 771
commons-cli 1,290 5 57 64
jackson-core 113,343 78 763 907
commons-csv 5,289 9 114 129

Table 6: Average Mutation Score Error

‘ Mutation Score Error

‘Cross—version Cross-project

Seshat 0.1233 0.4226
MutationBERT 0.0626 0.1488
SODA 0.0292 0.1242

Table 7: Results for tuning aggregation threshold

Kill Survive

Model ‘ Threshold ‘ F1Score F1 Score Accuracy
0.10 0.358 0.541 0.469
0.25 0.329 0.542 0.459
Seshat 0.50 0.260 0.531 0.430
0.75 0.194 0.522 0.403
0.90 0.169 0.518 0.393
0.10 0.763 0.592 0.703
0.25 0.735 0.580 0.679
MutationBERT 0.50 0.690 0.570 0.645
0.75 0.509 0.542 0.552
0.90 0.491 0.546 0.544
0.10 0.834 0.659 0.783
0.25 0.816 0.659 0.767
SODA 0.50 0.757 0.639 0.718
0.75 0.671 0.612 0.654
0.90 0.602 0.592 0.607

most commonly used f values 0.5 and 2 [7, 29, 44], but also include
0.2 and 5 for a wider range of evaluation. Note that f < 1 means
giving more weight to precision, while # > 1 means giving more
weight to recall. From the table, SODA consistently outperforms
the baselines with varying f values, both from the perspectives of
killed and survived mutants. SODA only performs slightly worse
than MutationBERT when the kill recall is considered five times
as important as kill precision (as shown by the kill F-5 score). For
the confirmation check scenario, false positives are more impor-
tant than false negatives, since false negatives could be further
checked by running predicted-survived mutants while false posi-
tives could not, leaving some survived mutants undetected. In other
words, survive F-2 score and survive F-5 score are more important
measurements, and SODA performs well on both of them.

Table 9 presents evaluation results for newer versions of the six
projects that are not included in the Defects4] dataset, assessing how
model performance evolves over time (we evaluate models on these
new versions with the trained models in RQ1). Due to compatibility
issues with JUnit 5, we use the most recent versions compatible
with JUnit 4 for mutation analysis with Major. Version details and
cross-project results of these new versions are available on our
website [42]. At the test matrix level, SODA outperforms Seshat
and MutationBERT, achieving improvements in kill-F1 score (4.78%
and 3.64%), survive-F1 score (6.45% and 8.49%), and accuracy (7.65%
and 11.50%), respectively. These advantages largely persist at the
test suite level, although SODA shows a slightly worse kill-F1 score
compared to MutationBERT. Note that compared to earlier results
in RQ1, SODA’s performance in the test matrix level prediction
declines by 19.63% in kill-F1 score, 9.55% in survive-F1 score, and
12.44% in accuracy. This decline also extends to the test suite level
prediction. The performance drop is attributed to the extensive
time gap, ranging from 2 to 12 years, between the training and
testing data sets. This has resulted in significant differences in code
and tests, leading to distinct distributions between the training
and testing data. Consequently, the knowledge acquired from the
training data inherently has limited applicability to the testing data,
which restricts the improvement of SODA’s performance. Despite
these issues, SODA’s lower kill recall compared to MutationBERT
(indicating more false negatives) can potentially be mitigated by
incorporating a confirmation check, as previously discussed in RQ1.

We analyze the overlap of mutant-test pairs correctly and in-
correctly predicted between SODA and the other techniques and
provide the Venn diagrams on our website [42]. From the figures,
SODA has the smallest area of incorrect prediction and the largest
area of correct prediction. To further understand the main rea-
sons for incorrect prediction, we perform a case study by manually
checking some samples. We find that insufficient context and missed
clues are the two main reasons for incorrect prediction [12]. Since
we only include the mutated methods and tests as input, SODA
may not have sufficient information when some tests indirectly
invoke the mutated methods (insufficient context) or SODA misses
some code clues to make correct predictions (missed clues). Some
examples are also provided on our website [42].

6 RELATED WORK

Mutation analysis is considered the strongest method for evaluat-
ing test suite efficacy [2], and has received focused and growing
attention in both academic circles [13, 36, 43] and industry prac-
tice [3, 38-40]. Since the high computation cost of mutation testing
makes it impractical in large complex systems, researchers have
put dedicated efforts into reducing the cost of mutation testing. For
example, mutation selection focuses on using a subset of mutant
operators [33-35, 41] or choosing a subset of mutants [10, 47] to

Spotting Code Mutation for Predictive Mutation Testing

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Table 8: F, score in the cross-version scenario

G larit Model Kill Kill Kill Kill Survive Survive Survive Survive
ranuianty ode F-0.2 Score F-0.5 Score F-2 Score F-5Score F-0.2Score F-0.5Score F-2Score F-5Score
Seshat 0.7135 0.7184 0.7580 0.7834 0.9105 0.9016 0.8774 0.8726
Test Matrix | MutationBERT 0.6403 0.6608 0.7767 0.8391 0.9245 0.8938 0.8139 0.7975
SODA 0.7641 0.7702 0.8097 0.8303 0.9325 0.9256 0.9040 0.8992
Seshat 0.8441 0.8135 0.7208 0.7001 0.5421 0.5645 0.6804 0.7267
Test Suite MutationBERT 0.8699 0.8602 0.8310 0.8247 0.6578 0.6610 0.6942 0.7095
SODA 0.9213 0.9140 0.8883 0.8817 0.7414 0.7516 0.7924 0.8043

Table 9: Performance on newer versions for the six projects

. Kill Survive

Granularity ‘ Model ‘ F1Score F1 Score Accuracy
Seshat 0.6029 0.7767 0.7175

Test Matrix | MutationBERT | 0.6095 0.7621 0.7131
SODA 0.6317 0.8268 0.7724
Seshat 0.6879 0.4596 0.6182

Test Suite | MutationBERT | 0.8300 0.5381 0.7626
SODA 0.8281 0.6117 0.7691

estimate the results of full mutation analysis. Kaufman et al. [18]
propose a measure of mutant usefulness and prioritize mutants
accordingly to reduce the time required for improving test com-
pleteness. In industry, to reduce the time cost of mutation testing,
researchers from Google [38, 39] propose a diff-based probabilistic
approach to reduce the number of mutants by omitting those unin-
teresting or uncovered lines. Researchers from Meta [3] propose
to semi-automatically learn new mutation operators to produce
valuable mutants. Then they apply the learned mutation operators
to generate mutants that are proven to expose a lack of testing.
Google’s approach complements ours, and combining our PMT
with their mutant reduction methods could be a future research
direction. Additionally, adapting our PMT to Meta’s strategy with
new mutation operators is another viable avenue for exploration.
Some researchers propose to build classification models to pre-
dict mutation testing results, which is the most relevant to our
work. Zhang et al. [49] first propose the task of PMT. They propose
dynamic and static features which are all program statistical infor-
mation based on PIE theory [45]. Then they build a random forest
model to predict the mutation testing results. Mao et al. [31] conduct
a comprehensive study based on the work by Zhang et al. [49]. They
consider more features, more classification algorithms, and more
subjects. The empirical results show that package-level features are
more important and random forest has advantages in accuracy as
being a classification algorithm. Aghamohammadi et al. [1] exam-
ine the impact of unreached mutants in PMT. An unreached mutant
is that the mutated line of the mutant is not executed by any test
cases [32]. Therefore, an unreached mutant certainly survives, and
adding them to the final results of PMT may cause a bias, making
the presented PMT results better than they really are. Therefore,
they propose to remove those unreached mutants and revisit the
PMT performance. Since collecting program statistical informa-
tion is expensive, Kim et al. [20] propose to use information from
code text to predict mutation testing results. They extract useful
code text such as a mutated line and use Bi-directional GRU to pro-
cess the text information. They build a deep neural network model
named Seshat, which is shown to outperform previous approaches.
Jain et al. [12] propose to use a pre-trained code model to predict
mutation testing results. They use contextual information from test

methods and mutants as input and fine-tune CodeBERT (8] with
PMT data. Different from all the approaches above, we propose to
use Mutational Semantic Learning to learn the representation of
mutant-test pairs by contrasting different categories of pairs and
thus learn the fine-grained textual features.

7 THREATS TO VALIDITY

Threats to internal validity mainly come from the implemen-
tation of the previous approaches and our approach. To reduce
the threats, we use the code published by prior work [12, 20], and
use the mature machine learning library PyTorch to implement our
approach. We release our code for ease of inspection and replication.
Threats to external validity mainly come from the subjects
and the generated mutants and tests. To reduce the threats, we use
the dataset published from previous work [20]. The subjects come
from Defects4], which is a widely used dataset for many software
engineering tasks and is considered representative of real-world
projects, enhancing our confidence in the generalizability of our
findings. However, using only the six projects from the Defects4]
dataset could potentially threaten the external validity of our find-
ings. To address this, we conduct experiments on newer versions
of the six projects that are not included in the Defects4] dataset,
and we plan to validate our methodology on additional projects in
future work?. Besides, since Major currently only supports JUnit 3
and JUnit 4, our experiments exclude projects that utilize JUnit 5 for
testing, which may also contribute to threats to external validity.
Threats to construct validity mainly come from the metrics
we use to evaluate approaches. To reduce the threats, we employ
widely used metrics for classification tasks in machine learning, i.e.,
precision, recall, and F1 score. We explore a range of values when
calculating the Fg score to discuss the impact of false negatives and
false positives. We also include a domain-specific metric, mutation
score error, to more comprehensively evaluate the approaches.

8 CONCLUSION

In this paper, we propose SODA, the first mutational semantic-
sensitive PMT approach. SODA learns the mutant-test pair represen-
tation by sampling contrastive groups and comparing mutant-test
pairs of different categories. We evaluate SODA in cross-version and
cross-project scenarios and the results show that SODA achieves
state-of-the-art performance. Using SODA, developers can more
accurately get PMT results with over 20X speed up.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Founda-
tion of China (Grant Nos. 62232001, 62372005, 62402482).

4We have begun preliminary evaluations on the commons-codec project, which serves
as an out-of-sample test. The initial results detailed on our website [42] are promising.

ASE

’24, October 27-November 1, 2024, Sacramento, CA, USA

REFERENCES

(1]

(2]

3

=

[4

=

[9

=

[10]

(11

[12]

[13]

[14

[15]

[16

=
=

[18]

[19

[20]

[21]

Alireza Aghamohammadi and Seyed-Hassan Mirian-Hosseinabadi. 2021. An
ensemble-based predictive mutation testing approach that considers impact of
unreached mutants. Software Testing, Verification and Reliability 31, 7 (2021),
el784.

James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. 2006.
Using mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering 32, 8 (2006), 608—624.

Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What it would take to use mutation testing
in industry—a study at facebook. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 268-
277.

Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar T Devanbu,
and Baishakhi Ray. 2022. Natgen: generative pre-training by “naturalizing” source
code. In Proceedings of the 30th ACM joint european software engineering conference
and symposium on the foundations of software engineering. 18-30.

Yizhou Chen, Zeyu Sun, Zhihao Gong, and Dan Hao. 2024. Improving Smart
Contract Security with Contrastive Learning-based Vulnerability Detection. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1-11.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noél Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-sequence
learning for end-to-end program repair. [EEE Transactions on Software Engineering
47,9 (2019), 1943-1959.

Mohamed EI Kerdawy, Mohamed El Halaby, Afnan Hassan, Mohamed Mabher,
Hatem Fayed, Doaa Shawky, and Ashraf Badawi. 2020. The automatic detection
of cognition using eeg and facial expressions. Sensors 20, 12 (2020), 3516.
Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. Vulrepair: a t5-based automated software vulnerability repair. In Proceedings
of the 30th ACM joint european software engineering conference and symposium
on the foundations of software engineering. 935-947.

Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.
2015. How hard does mutation analysis have to be, anyway?. In 2015 IEEE
26th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
216-227.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin Stoyanov. 2020. Supervised
Contrastive Learning for Pre-trained Language Model Fine-tuning. In Interna-
tional Conference on Learning Representations.

Kush Jain, Uri Alon, Alex Groce, and Claire Le Goues. 2023. Contextual Predictive
Mutation Testing. In Proceedings of the 31st ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering.
250-261.

Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649-678.
Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine
translation for automatic program repair. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1161-1173.

René Just. 2014. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In Proceedings of the 2014 international symposium on software
testing and analysis. 433-436.

René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4]: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 international symposium on software testing and analysis. 437-440.
René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654—665.

Samuel] Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul Ammann, and
René Just. 2022. Prioritizing mutants to guide mutation testing. In Proceedings of
the 44th International Conference on Software Engineering. 1743-1754.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
learning. Advances in neural information processing systems 33 (2020), 18661—
18673.

Jinhan Kim, Juyoung Jeon, Shin Hong, and Shin Yoo. 2022. Predictive mutation
analysis via the natural language channel in source code. ACM Transactions on
Software Engineering and Methodology (TOSEM) 31, 4 (2022), 1-27.

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT international symposium on software testing and analysis.
169-180.

[22

[27

[28

[29

[30

[31

[32

[33

[35

[36

(37]

[39

[40]

[45]

[46

Zhao et al.

Yi Li, Shaohua Wang, and Tien Nguyen. 2021. Fault localization with code
coverage representation learning. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 661-673.

Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang
Mao. 2023. Cct5: A code-change-oriented pre-trained model. In Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1509-1521.

Richard J Lipton and Frederick G Sayward. 1979. Mutation analysis.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight decay regularization in
adam. (2018).

Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and
Lingming Zhang. 2021. Boosting coverage-based fault localization via graph-
based representation learning. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 664-676.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. Coconut: combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and analysis. 101-114.

Parvez Mahbub, Ohiduzzaman Shuvo, and Mohammad Masudur Rahman. 2023.
Explaining software bugs leveraging code structures in neural machine trans-
lation. In 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 640-652.

Etienne Manderscheid and Matthias Lee. 2023. Predicting customer satisfaction
with soft labels for ordinal classification. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 5: Industry Track). 652
659.

Angi Mao, Mehryar Mohri, and Yutao Zhong. 2023. Cross-entropy loss functions:
Theoretical analysis and applications. In International Conference on Machine
Learning. PMLR, 23803-23828.

Dongyu Mao, Lingchao Chen, and Lingming Zhang. 2019. An extensive study
on cross-project predictive mutation testing. In 2019 12th IEEE Conference on
Software Testing, Validation and Verification (ICST). IEEE, 160-171.

Pedro Reales Mateo and Macario Polo Usaola. 2015. Reducing mutation costs
through uncovered mutants. Software Testing, Verification and Reliability 25, 5-7
(2015), 464-489.

Aditya P Mathur. 1991. Performance, effectiveness, and reliability issues in
software testing. In 1991 The Fifteenth Annual International Computer Software &
Applications Conference. IEEE Computer Society, 604-605.

A Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H Untch, and Christian
Zapf. 1996. An experimental determination of sufficient mutant operators. ACM
Transactions on Software Engineering and Methodology (TOSEM) 5, 2 (1996), 99—
118.

A Jefferson Offutt, Gregg Rothermel, and Christian Zapf. 1993. An experimen-
tal evaluation of selective mutation. In Proceedings of 1993 15th international
conference on software engineering. IEEE, 100-107.

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in computers. Vol. 112. Elsevier, 275-378.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Goran Petrovi¢ and Marko Ivankovi¢. 2018. State of mutation testing at google. In
Proceedings of the 40th international conference on software engineering: Software
engineering in practice. 163-171.

Goran Petrovi¢, Marko Ivankovi¢, Gordon Fraser, and René Just. 2021. Practical
mutation testing at scale: A view from google. IEEE Transactions on Software
Engineering 48, 10 (2021), 3900-3912.

Ana B Sanchez, José A Parejo, Sergio Segura, Amador Duran, and Mike Pa-
padakis. 2024. Mutation Testing in Practice: Insights from Open-Source Software
Developers. IEEE Transactions on Software Engineering (2024).

Akbar Siami Namin, James H Andrews, and Duncan] Murdoch. 2008. Sufficient
mutation operators for measuring test effectiveness. In Proceedings of the 30th
international conference on Software engineering. 351-360.

SODA. 2024. Replication package. https://github.com/yifan-CodeDir/SODA.
Accessed: 2024-09-10.

Zhao Tian, Junjie Chen, Qihao Zhu, Junjie Yang, and Lingming Zhang. 2022.
Learning to construct better mutation faults. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1-13.

Siddhanth Tripathi, Sinchana Shetty, Somil Jain, and Vanshika Sharma. 2021.
Lung disease detection using deep learning. Int. J. Innov. Technol. Explor. Eng 10,
8 (2021), 1-10.

Jeffrey M. Voas. 1992. PIE: A dynamic failure-based technique. IEEE Transactions
on software Engineering 18, 8 (1992), 717.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural

Spotting Code Mutation for Predictive Mutation Testing

Language Processing. 8696—8708.

[47] W Eric Wong and Aditya P Mathur. 1995. Reducing the cost of mutation testing:
An empirical study. Journal of Systems and Software 31, 3 (1995), 185-196.

[48] Chungiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In 2023 IEEE/ACM

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

45th International Conference on Software Engineering (ICSE). IEEE, 1482-1494.
[49] Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng,

and Lu Zhang. 2016. Predictive mutation testing. In Proceedings of the 25th

international symposium on software testing and analysis. 342-353.

